
Rethinking Multidimensional Discriminator Output
for Generative Adversarial Networks

Mengyu Dai * 1 Haibin Hang * 2 Anuj Srivastava 3

Abstract

The study of multidimensional discriminator
(critic) output for Generative Adversarial Net-
works has been underexplored in the literature.
In this paper, we generalize the Wasserstein GAN
framework to take advantage of multidimensional
critic output and explore its properties. We also
introduce a square-root velocity transformation
(SRVT) block which favors training in the multidi-
mensional setting. Proofs of properties are based
on our proposed maximal p-centrality discrep-
ancy, which is bounded above by p-Wasserstein
distance and fits the Wasserstein GAN framework
with multidimensional critic output n. Especially
when n = 1 and p = 1, the proposed discrep-
ancy equals 1-Wasserstein distance. Theoretical
analysis and empirical evidence show that high-
dimensional critic output has its advantage on
distinguishing real and fake distributions, and ben-
efits faster convergence and diversity of results.

1. Introduction
Generative Adversarial Networks (GAN) have led to numer-
ous success stories in various tasks in recent years (Yang
et al., 2022; Yu et al., 2022; Niemeyer & Geiger, 2021; Chan
et al., 2021; Han et al., 2021; Karras et al., 2020a; Nauata
et al., 2020; Heim, 2019). The goal in a GAN framework
is to learn a distribution (and generate fake data) that is as
close to real data distribution as possible. This is achieved
by playing a two-player game, in which a generator and a
discriminator compete with each other and try to reach a
Nash equilibrium (Goodfellow et al., 2014). Arjovsky et al.
(Arjovsky & Bottou, 2017; Arjovsky et al., 2017) pointed
out the shortcomings of using Jensen-Shannon Divergence
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in formulating the objective function, and proposed using
the 1-Wasserstein distance instead. Numerous promising
frameworks (Li et al., 2017; Mroueh et al., 2017b; Mroueh
& Sercu, 2017; Mroueh et al., 2017a; Wu et al., 2019; Desh-
pande et al., 2019; Ansari et al., 2020) based on other dis-
crepancies were developed afterwards. Although some of
these works use critic output dimension n = 1, empiri-
cal evidence can be found that using multiple dimension n
could be advantageous. For examples, in (Li et al., 2017)
authors pick different ns (16, 64, 128) for different datasets;
In Sphere GAN (Park & Kwon, 2019) their ablation study
shows the best performance with n = 1024. However, the
reason for this phenomenon has not been well explored yet.

One contribution of this paper is to explore the proper-
ties of multidimensional critic output in the generalized
WGAN framework. Particularly, we propose a new metric
on the space of probability distributions, called maximal
p-centrality discrepancy. This metric is closely related to
p-Wasserstein distance (Theorem 3.9) and can serve as an
alternative of WGAN objective especially when the dis-
criminator has multidimensional output. In this revised
WGAN framework we show that using high-dimensional
critic output could make discriminator more informative on
distinguishing real and fake distributions (Proposition 3.11).
In classical WGAN with only one critic output, the dis-
criminator push-forwards (or projects) real and fake dis-
tributions to 1-dimensional space, and then look at their
maximal mean discrepancy. This 1-dimensional push-
forward may hide significant differences of distributions
in the shadow. Even though ideally there exists a “perfect”
push-forward which reveals any tiny differences, practi-
cally the discriminator has difficulties to reach that global
optimal push-forward (Stanczuk et al., 2021). However,
using p-centrality allows to push-forward distributions to
higher dimensional space. Since even an average high-
dimensional push-forward may reveal more differences than
a good 1-dimensional push-forward, this reduces the burden
on discriminator. Specifically, we show that more faithful
p-centrality functions returns larger discrepancies between
probability distributions (Lemma 3.11).

Another novelty of this work is to break the symmetry struc-
ture of the discriminator network by compositing with an
asymmetrical square-root velocity transformation (SRVT).
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In general architectures people assume that the output layer
of discriminator is fully connected. This setup puts all out-
put neurons in equal and symmetric positions. As a result,
any permutation of the multidimensional output vector will
leave the value of objective function unchanged. This per-
mutation symmetry implies that the weights connected to
output layer are somehow correlated and this would under-
mine the generalization power of the discriminator network
(Liang et al., 2019; Badrinarayanan et al., 2015). After
adding the asymmetrical SRVT block, each output neuron
would be structurally unique (Proposition 3.15). Our under-
standing is that the structural uniqueness of output neurons
would imply their functionality uniqueness. This way, dif-
ferent output neurons are forced to reflect distinct features
of input distribution. Hence SRVT serves as an magnifier
which favors the use of high-dimensional critic output.

2. Related Work
Wasserstein Distance and Other Discrepancies Used in
GAN: Arjovsky et al. (Arjovsky et al., 2017) applied
Kantorovich-Rubinstein duality for 1-Wasserstein distance
as loss function in GAN objective. WGAN makes great
progress toward stable training compared with previous
GANs, and marks the start of using Wasserstein distance
in GAN. However, sometimes it still may converge to sub-
optimal optima or fail to converge due to the raw realization
of Lipschitz condition by weight clipping. To resolve these
issues, researchers proposed sophisticated ways(Gulrajani
et al., 2017; Wei et al., 2018; Miyato et al., 2018) to enforce
Lipschitz condition for stable training. Recently, people
come up with another way to involve Wasserstein distance
in GAN (Wu et al., 2019; Kolouri et al., 2019; Deshpande
et al., 2018; Lee et al., 2019). They use the Sliced Wasser-
stein Distance (Rabin et al., 2011; Kolouri et al., 2016) to
estimate the Wasserstein distance from samples based on
a summation over the projections along random directions.
Either of these methods rely on pushforwards of real and
fake distributions through Lipschitz functions or projections
on to 1-dimensional space. In our work, we attempt to dis-
tinguish two distributions by looking at their pushforwards
in high dimensional space.

Another way people used to distinguish real data and fake
data distributions in generative network is by moment match-
ing (Li et al., 2015; Dziugaite et al., 2015). Particularly,
in (Li et al., 2017) the authors used the kernel maximum
mean discrepancy (MMD) in GAN objective, which aims
to match infinite order of moments. In our work we pro-
pose to use the maximum discrepancy between p-centrality
functions to measure the distance of two distributions. The
p-centrality function (Definition 3.1) is exactly the p-th root
of the p-th moment of a distribution. Hence, the maximal
p-centrality discrepancy distance we propose can be viewed

as an attempt to match the p-th moment for any given p ≥ 1.

p-Centrality Functions: The mean or expectation of a dis-
tribution is a basic statistic. Particularly, in Euclidean spaces,
it is well known that the mean realizes the unique minimizer
of the so-called Fréchet function of order 2 (cf. (Grove &
Karcher, 1973; Bhattacharya & Patrangenaru, 2003; Ar-
naudon et al., 2013)). Generally speaking, a Fréchet func-
tion of order p summarizes the p-th moment of a distribu-
tion with respect to any base point. A topological study of
Fréchet functions is carried out in (Hang et al., 2019) which
shows that by taking p-th root of a Fréchet function, the
p-centrality function can derive topological summaries of a
distribution which is robust with respect to p-Wasserstein
distance. In our work, we propose using p-centrality func-
tions to build a nice discrepancy distance between distribu-
tions, which would benefit from its close connection with
p-Wasserstein distance.

Asymmetrical Networks: Symmetries occur frequently in
deep neural networks. By symmetry we refer to certain
group actions on the weight parameter space which keep the
objective function invariant. These symmetries would cause
redundancy in the weight space and affects the generaliza-
tion capacity of network (Liang et al., 2019; Badrinarayanan
et al., 2015). There are two types of symmetry: (i) permu-
tation invariant; (ii) rescaling invariant. A straight forward
way to break symmetry is by random initialization (cf. (Glo-
rot & Bengio, 2010; He et al., 2015)). Another way to break
symmetry is via skip connections to add extra connections
between nodes in different layers (He et al., 2016a;b; Huang
et al., 2017). In our work, we attempt to break the permu-
tation symmetry of the output layer in the discriminator
using a nonparametric asymmetrical transformation spec-
ified by square-root velocity function (SRVF) (Srivastava
et al., 2011; Srivastava & Klassen, 2016). The simple trans-
formation that converts functions into their SRVFs changes
Fisher-Rao metric into the L2 norm, enabling efficient anal-
ysis of high-dimensional data. Since the discretised formu-
lation of SRVF is equivalent with an non-fully connected
network, it can be viewed as breaking symmetry by deleting
specific connections from the network.

3. Methodology
In this section we use the proposed GAN framework as a
starting point to study the behaviors of multidimensional
critic output. Proofs of concepts can be found in Appendix.

3.1. Objective Function

The objective function of the proposed GAN is as follows:

min
G

max
D

(
Ex[∥D(x)∥p]

)1/p − (
Ez[∥D(G(z))∥p]

)1/p
(1)
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where ∥ · ∥ denotes L2 norm. G and D denotes genera-
tor and discriminator respectively. p refers to the order of
moments. x ∼ Pr is the input real sample and z ∼ p(z)
is a noise vector for the generated sample. The output of
the last dense layer of discriminator is an n-dimensional
vector in the Euclidean space Rn. In contrast to traditional
WGAN with 1-dimensional discriminator output, our frame-
work allows the last dense layer of discriminator to have
multidimensional output.

3.2. p-centrality function

The p-centrality function was introduced in (Hang et al.,
2019) which offers a way to obtain robust topological sum-
maries of a probability distribution. In this section we show
that p-centrality function is not only a robust but also a
relatively faithful indicator of a probability distribution.

Definition 3.1 (p-centrality function). Given a Borel prob-
ability measure P on a metric space (M,d) and p ≥ 1, the
p-centrality function is defined as

σP,p(x) :=

(∫
M

dp(x, y)dP(y)
) 1

p

= (Ey∼P[d
p(x, y)])

1
p .

Particularly, the value of p-centrality function at x is the
p-th root of the p-th moment of P with respect to x. As
we know it, the p-th moments are important statistics of
a probability distribution. After taking the p-th root, the
p-centrality function retains those important information in
p-th moments, and it also shows direct connection with the
p-Wasserstein distance Wp:

Lemma 3.2. For any x ∈ M , let δx be the Dirac measure
centered at x. Then σP,p(x) = Wp(P, δx).
Lemma 3.3. For any two Borel probability measures P and
Q on (M,d), we have

∥σP,p − σQ,p∥∞ ≤ Wp(P,Q) ≤ ∥σP,p + σQ,p∥∞.

Let P(M) be the set of all probability measures on M
and let C0(M) be the set of all continuous functions on
M . We define an operator Σp : P(M) → C0(M) with
Σp(P) = σP,p. Lemma 3.3 implies that Σp is 1-Lipschitz.

Specifically, since p-Wasserstein distance Wp metrizes weak
convergence when (M,d) is compact, we have:

Proposition 3.4. If (M,d) is compact and P weakly con-
verges to Q, then σP,p converges to σQ,p with respect to L∞

distance.

Remark 3.5. On the other hand, if σP,p ≡ σQ,p, Lemma 3.2
implies Wp(P, δx) = Wp(Q, δx) for any Dirac measure δx.
Intuitively this means that, at least, P and Q look the same
from the point of view of all Dirac measures. This implies
that p-centrality function is a relatively faithful indicator of
a probability distribution.

3.3. The maximal p-centrality discrepancy

To measure the dissimilarity between two complicated dis-
tributions P, Q, we can consider how far the indicators of
their push-forwards or projections f∗P, f∗Q could fall apart.
According to the dual formulation of W1:

K ·W1(P,Q) = sup
f∈Lip(K)

Ex∼f∗P[x]− Ey∼f∗Q[y],

even considering very simple indicators – the expectations
– as long as we can search over all K-Lipschitz functions
f ∈ Lip(K), we can still approach W1.

Even though a neural network is very powerful on generat-
ing all kinds of Lipschitz functions, it may not be able to
or have difficulties to generate the optimal push-forward.
This may affects the performance of WGAN(Stanczuk et al.,
2021). Hence if we consider more faithful indicators, is it
possible to obtain more reliable fake distribution even using
sub-optimal push-forward? Motivated by this, we consider
Lipschitz functions f : M → Rn and replace the expecta-
tions by the p-centrality functions. Particularly, for fixed
base point x0 ∈ Rn we look at discrepancy:

Lp,n,K(P,Q) := sup
f∈Lip(K)

σf∗P,p(x0)− σf∗Q,p(x0).

Lemma 3.6. The definition of Lp,n,K is independent of the
choice of the base point. Or simply

Lp,n,K(P,Q) = sup
f∈Lip(K)

(∫
∥f∥pdP

) 1
p

−
(∫

∥f∥pdQ
) 1

p

.

The following proposition implies that Ln,p,K is a direct
generalization of Wasserstein distance:

Proposition 3.7. If supp[P] and supp[Q] are both compact,
then

L1,1,K(P,Q) = K ·W1(P,Q).

Recall that in WGAN, the discriminator is viewed as a K-
Lipschitz function. In our understanding, this requirement is
enforced to prevent the discriminator from distorting input
distributions too much. More precisely, in the more general
setting, the following is true:

Proposition 3.8. Given any K-Lipschitz map f :
(M,dM ) → (N, dN ) and Borel probability distributions
P,Q ∈ P(M). Then the pushforward distributions
f∗P, f∗Q ∈ P(N) satisfy

Wp(f∗P, f∗Q) ≤ K ·Wp(P,Q).

More generally, Ln,p,K is closely related with p-Wasserstein
distance:

Theorem 3.9. For any Borel distributions P,Q ∈ P(M),

Lp,n,K(P,Q) ≤ K ·Wp(P,Q).
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Also Ln,p,K is closely related with an L∞ distance:

Proposition 3.10. For any K-Lipschitz map f : M → Rn,

∥σf∗P,p − σf∗Q,p∥∞ ≤ max{Lp,n,K(P,Q), Lp,n,K(Q,P)}.

The lower bound in Proposition 3.10 implies that, when
we feed two distributions into the discriminator f , as long
as some differences retained in the push-forwards f∗P and
f∗Q, they would be detected by Lp,n,K . The upper bound
in Theorem 3.9 implies that, if P and Q only differ a little
bit under distance Wp, then Lp,n,K(P,Q) would not change
too much.

As we increase n, the p-centrality function become more
and more faithful which picks up more differences in the
discrepancy:

Proposition 3.11. If integers n < n′, then for any P,Q ∈
P(Rm), we have Lp,n,K(P,Q) ≤ Lp,n′,K(P,Q).

By Proposition 3.11 and Theorem 3.9, the limit

Lp,K(P,Q) := lim
n→∞

Lp,n,K(P,Q)

exists and is bounded above by K ·Wp(P,Q). Particularly,
this bound is tight when p = 1 (Proposition 3.7).

As a summation, when we use weight regularization such
that the discriminator is K-Lipschitz and fix some learning
rate, using larger critic output dimension n implies that:

1. the discriminator may get better approximation of ei-
ther Lp,K or K ·Wp;

2. the gradient descent may dive deeper due to larger
discrepancy;

3. the generated fake distribution may be more reliable
due to more faithful indicator.

Remark 3.12. Remember that our comparison is under fixed
Lipschitz constant K. For example, we can easily scale up
the objective function to obtain larger discrepancy, but it
is not fair comparison anymore. Because when scaling up
objective functions we in fact scaled up both the Lipschitz
constant and the maximal possible discrepancy.

3.4. Square Root Velocity Transformation

Section 3.3 suggests us to consider high-dimensional dis-
criminator output. However, if the last layer of discriminator
is fully connected, then all output neurons are in symmet-
ric positions and the loss function is permutation invariant.
Thus the generalization power of discriminator only de-
pends on the equivalence class obtained by identifying each
output vector with its permutations (Badrinarayanan et al.,
2015; Liang et al., 2019). Correspondingly the advantage

of high-dimensional output vector would be significantly
undermined. In order to further improve the performance
of our proposed framework, we consider adding an SRVT
block to the discriminator to break the symmetric structure.
SRVT is usually used in shape analysis to define a distance
between curves or functional data.

Particularly, we view the high-dimensional discriminator
output (x1, x2, · · · , xn) as an ordered sequence.
Definition 3.13. The signed square root function Q : R →
R is given by Q(x) = sgn(x)

√
|x|.

Given any differentiable function f : [0, 1] → R, its SRVT
is a function q : [0, 1] → R with

q := Q ◦ f ′ = sgn(f ′)
√
|f ′|. (2)

SRVT is invertible. Particularly, from q we can recover f :
Lemma 3.14.

f(t) = f(0) +

∫ t

0

q(s)|q(s)|ds. (3)

By assuming x0 = 0, a discretized SRVT

S : (x1, x2, · · · , xn) ∈ Rn 7→ (y1, · · · , yn) ∈ Rn

is given by

yi = sgn(xi − xi−1)
√
|xi − xi−1|, i = 1, 2, 3, · · · , n.

Similarly, S−1 : Rn → Rn is given by

xi =

i∑
j=1

yj |yj |, i = 1, 2, 3, · · · , n.

With this transformation, the pullback of L2 norm gives

∥(x1, · · · , xn)∥Q =

√√√√ n∑
i=1

|xi − xi−1| (4)

Applying SRVT on a high-dimensional vector results in an
ordered sequence which captures the velocity difference at
each consecutive position. The discretized SRVT can be
represented as a neural network with activation function
to be signed square root function Q as depicted in Fig 1.
Particularly, for the purpose of our paper, each output neuron
of SRVT is structurally unique:
Proposition 3.15. Any (directed graph) automorphism of
the SRVT block leaves each output neuron fixed.

Also, the square-root operation has smoothing effect which
forces the magnitudes of derivatives to be more concentrated.
Thus, values at each output neuron would contribute more
similarly to the overall resulting discrepancy. It reduces the
risk of over-emphasizing features on certain dimensions and
ignoring the rest ones.
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Figure 1. A representation of the SRVT block.

4. Experiments
In this section we provide experimental results supporting
our theoretical analysis and explore various setups to study
characteristics of multidimensional critic output.

4.1. Datasets and Evaluation Metrics and
Implementation Details

We implemented experiments on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2010), ImageNet-1K (Deng et al., 2009),
STL-10 (Coates et al., 2011) and LSUN bedroom (Yu et al.,
2015) datasets. Results were evaluated with Frechet Incep-
tion Distance (FID) (Heusel et al., 2017), Kernel Inception
Distance (KID) (Bińkowski et al., 2018b) and Precision
and Recall (PR) (Sajjadi et al., 2018). For unconditional
generation task, we employed StyleGAN2 (Karras et al.,
2020b) and ResNet(Miyato et al., 2018) architectures. In
StyleGAN2 experiments we followed the default parameter
settings provided by (Karras et al., 2020b). In ResNet exper-
iments we used spectral normalization to ensure Lipschitz
condition. For conditional generation task, we adopted Big-
GAN (Brock et al., 2019) and used their default parameter
settings. More details can be found in Appendix B.

4.2. Results

In the following sections we first present ablation experi-
mental results on CIFAR-10 with analysis, and then report
final evaluation scores on all datasets.

Ablation Study:
We first studied the effect of multidimensional critic out-
put using StyleGAN2 network architectures (Karras et al.,
2020b). Figure 2 shows recorded FID during training on
CIFAR-10. Here we applied hinge loss as one common
choice for settings with multidimensional output. From Fig-
ure 2 one can see higher n led to faster convergence and
consistently competitive results at all training stages. In

training of StyleGAN2, R1 regularization is used as a de-
fault choice for regularization. Note that successful training
for higher n in this case requires smaller γs. Detailed setting
for γs can be found in Appendix B.

Figure 2. FID during training on CIFAR-10 with n = 1, 16, 128
and 1024 using StyleGAN2 architectures.

We then conducted experiments under different settings to
explore the effects of p-centrality function and SRVT used
in our framework. Since our approach is tightly related to
WGAN, we also include results from WGAN for compari-
son. In each setting we trained 100K generator iterations on
CIFAR-10 using ResNet architectures, and reported average
FID scores calculated from 5 runs in Fig 3. For this exper-
iment we used 10K generated samples for fast evaluation.
One can see without the use of SRVT (three green curves),
settings with higher dimensional critic output resulted in bet-
ter evaluation performances. The pattern is the same when
comparing cases with SRVT (three blue curves). These
observations are consistent with our Proposition 3.11. Fur-
thermore, the results shows the asymmetric transformation
boosts performances for different choices of ns, especially
when n = 1024 (blue vs green). We also provide evaluation
results of precision and recall metrics for above settings in
Appendix B.

We also present comparisons using KID under different set-
tings in Fig 4. Results in Fig 4(a) are aligned with previous
evaluations which shows the advantage of using higher di-
mensional critic output. Performance was further boosted
with SRVT. Fig 4(b) shows KID evaluations under different
choices of ps, where SRVT was used with fixed n = 1024.
We observe using p = 1 only, or both p = 1 and 2 resulted
in better performance compared with using p = 2 only. We
also explored involving higher p (p > 2) yet did not see
improvement in terms of evaluations. In the following we
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Figure 3. FID comparison under different settings during training
using ResNet backbone.

used p = 1 as the default setting.

(a) (b)

Figure 4. KID evaluation under different settings. (a) Left: without
SRVT; Right: default setting with SRVT. (b) Evaluation with SRVT
under different ps with fixed n = 1024.

In the following we display our final evaluation results. For
fair comparison we list comparable results using the same
network architectures.

Quantitative Results:
To compare GAN objectives, we present evaluations of FID
on unconditional generation experiments averaged over 5
random runs in Table 1 . We compare with methods related
to our work, including WGAN-GP (Gulrajani et al., 2017),
MMD GAN-rq (Li et al., 2017), SNGAN (Miyato et al.,
2018), CTGAN (Wei et al., 2018), Sphere GAN (Park &
Kwon, 2019), SWGAN (Wu et al., 2019), CRGAN (Zhang
et al., 2020) and DGflow (Ansari et al., 2021).

Here we also present evaluation results of unconditional
experiments on ImageNet using StyleGAN2 architectures.
Table 2 shows the feasibility of using high-dimensional

Table 1. FIDs(↓) from unconditional generation experiments on
CIFAR-10 with ResNet architectures.

Method CIFAR-10 STL-10 LSUN
WGAN-GP 19.0(0.8) 55.1 26.9(1.1)
SNGAN 14.1(0.6) 40.1(0.5) 31.3(2.1)
MMD GAN-rq - - 32.0
CTGAN 17.6(0.7) - 19.5(1.2)
Sphere GAN 17.1 31.4 16.9
SWGAN 17.0(1.0) - 14.9(1.0)
CRGAN 14.6 - -
DGflow 9.6(0.1) - -
Ours 8.5(0.3) 26.1(0.4) 14.2(0.2)

critic output in large-scale settings. With comparable FIDs,
the precision-recall scores indicate that high-dimensional
critic output potentially improves diversity of results.

n FID Precision Recall

1 55.82 0.677 0.883
1024 53.66 0.637 0.901

Table 2. Evaluations on 256 × 256 ImageNet experiments with
n = 1 and 1024 using StyleGAN2 architectures.

Table 3. FIDs(↓) from conditional generation experiments with
BigGAN architectures.

Objective CIFAR-10 CIFAR-100
Hinge 9.7(0.1) 13.6(0.1)
Ours 8.9(0.1) 12.3(0.1)

As presented in Table 1, the proposed method led to com-
petitive results in comparable settings on the three datasets.

For conditional generation, we show evaluation results from
the original BigGAN setting and the proposed objective in
Table 3. The results indicate the proposed framework can
also be applied in the more sophisticated training setting
and obtain competitive performance.

5. Conclusion and Discussion
In this paper we have explored the properties of multiple
critic outputs in GANs based on the proposed the maximal
p-centrality discrepancy. We have further introduced an
asymmetrical (square-root velocity) transformation added
to discriminator to break the symmetric structure of its net-
work output. The use of the nonparametric transformation
takes advantage of multidimensional features and improves
the generalization capability of the network. Although the
properties are investigated in a WGAN framework, the gen-
eral pattern can also be extended to other frameworks which
utilize min-max discrepancy as objectives.
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Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A.
Demystifying MMD GANs. In International Conference
on Learning Representations, 2018a.
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A. Proofs
A.1. Lemma 3.3

Proof. For any x ∈ M , by Lemma 3.2 and triangle inequal-
ity we have

|σP,p(x)− σQ,p(x)| ≤ Wp(P,Q) ≤ |σP,p(x) + σQ,p(x)|.

The result follows by letting x run over all M .

A.2. Lemma 3.6

Proof. Let ϕ be the translation map on Rn with ϕ(y) =
y+x0. Then g := ϕ−1 ◦ f ∈ Lip(K) iff. f ∈ Lip(K) and

Lp,n,K(P,Q) = sup
f∈Lip(K)

σf∗P,p(ϕ(0))− σf∗Q,p(ϕ(0))

= sup
f∈Lip(K)

σ(ϕ−1◦f)∗P,p(0)− σ(ϕ−1◦f)∗Q,p(0)

= sup
g∈Lip(K)

σg∗P,p(0)− σg∗Q,p(0)

= sup
f∈Lip(K)

(∫
∥f∥pdP

) 1
p

−
(∫

∥f∥pdQ
) 1

p

.

A.3. Proposition 3.7

Proof. Since f ∈ Lip(K) implies |f | ∈ Lip(K), we easily
have L1,1,K ≤ K ·W1.

On the other hand, for any ϵ > 0, there exists a K-Lipschitz
map f : M → R s.t.

∫
fdP−

∫
fdQ > K ·W1(P,Q)− ϵ.

Let D = supp[P] ∪ supp[Q] and c = minx∈D f(x), then
f − c ≥ 0 and

∫
fdP −

∫
fdQ =

∫
(f − c)dP −

∫
(f −

c)dQ =
∫
|f−c|dP−

∫
|f−c|dQ ≤ L1,1,K(P,Q). Hence

L1,1,K(P,Q) ≥ K · W1(P,Q) − ϵ for any ϵ > 0 which
implies L1,1,K ≥ K ·W1.

A.4. Proposition 3.8

Proof. Let Γ(P,Q) be the set of all joint probability mea-
sures of P and Q. For any γ ∈ Γ(P,Q), we have f∗γ ∈
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Γ(f∗P, f∗Q). By definition of the p-Wasserstein distance,

Wp(f∗P, f∗Q)

= inf
γ′∈Γ(f∗P,f∗Q)

(∫
N×N

dpN (y1, y2)dγ
′(y1, y2)

)1/p

≤ inf
γ∈Γ(P,Q)

(∫
N×N

dpN (y1, y2)d(f∗γ)(y1, y2)

)1/p

= inf
γ∈Γ(P,Q)

(∫
M×M

dpN (f(x1), f(x2))dγ(x1, x2)

)1/p

≤ inf
γ∈Γ(P,Q)

(∫
M×M

Kp · dpM (x1, x2)dγ(x1, x2)

)1/p

=K · inf
γ∈Γ(P,Q)

(∫
M×M

dpM (y1, y2)dγ(y1, y2)

)1/p

=K ·Wp(P,Q).

A.5. Theorem 3.9

Proof. By Lemma 3.2, we have

Lp,n,K(P,Q) = sup
f∈Lip(K)

Wp(f∗P, δ0)−Wp(f∗Q, δ0).

Applying triangle inequality and Proposition 3.8, we have

Lp,n,K(P,Q) ≤ sup
f∈Lip(K)

Wp(f∗P, f∗Q) ≤ K ·Wp(P,Q).

A.6. Proposition 3.10

Proof.

∥σf∗P,p − σf∗Q,p∥∞
= sup

x0∈Rn

∣∣σf∗P,p(x0)− σf∗Q,p(x0)
∣∣

≤ sup
x0∈Rn

sup
f∈Lip(K)

∣∣σf∗P,p(x0)− σf∗Q,p(x0)
∣∣

= sup
x0∈Rn

max{Lp,n,K(P,Q), Lp,n,K(Q,P)}.

A.7. Proposition 3.11

Proof. For any n < n′ we have natural embedding Rn ↪→
Rn′

. Hence any K-Lipschitz function with domain Rn can
also be viewed as a K-Lipschitz function with domain Rn′

.
Hence larger n gives larger candidate pool for searching the
maximal discrepancy and the result follows.

A.8. Proposition 3.15

Proof. View the SRVT block as a directed graph, then all
output neurons has out-degree 0. By the definition of dis-

critized SRVT, there is a unique output neuron v0 with in-
degree 1 and any two different output neurons have different
distance to v0. Since any automorphism of directed graph
would preserve in-degrees, out-degrees and distance, it has
to map each output neuron to itself.

B. Additional Experiments
B.1. Details in Datasets, Evaluations and

Implementations

For each dataset, we center-cropped and resized the images,
where images in STL-10, LSUN bedroom, and ImageNet
were resized to 48×48, 64×64 and 256×256 respectively.
In ablation study with ResNet architectures we generated
10K images for fast evaluation.In all other cases we used
50K generated samples against real sets for FID calcula-
tion. Lower FID and KID scores and higher PR indicate
better performance. Adam optimizer was used with learning
rate 1e − 4, β1 = 0 and β2 = 0.9. The length of input
noise vector z was set to 128, and batch size was fixed to
64. Precision and recall were calculated against test set for
CIFAR-10 and validation set for ImageNet.

B.2. Settings of γ in StyleGAN2 Experiments

In the experiments we used γ = 1e−2, 1e−2, 1e−4, 1e−6
for n = 1, 16, 128, 1024 respectively, where the total R1

regularization term equals 0.5× γ ×R1 penalty. Figure 5
shows R1 penalty during training under these settings.

Figure 5. R1 penalty during training on CIFAR-10 with n =
1, 16, 128 and 1024 using StyleGAN2 architectures.
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B.3. Evaluations of Precision and Recall for Ablations

In Fig 6 we present plots of precision and recall from these
settings. As we see the setting with the highest dimensional
critic output n = 1024 and with the use of SRVT led to
the best results compared to other settings. The result also
indicates settings with high-dimensional critic output gener-
ated more diversified samples. For WGAN-GP we obtained
(0.850, 0.943) recall and precision.

Figure 6. Precision and recall plot under different settings.

B.4. Effect of SRVT in MMD-GAN

We conducted experiments to validate the effect of SRVT
with MMD-GAN objective (Li et al., 2017). For implemen-
tation we used the authors’ default hyper-parameter settings
and network architectures. From Table 4 one can see SRVT

Table 4. Evaluation of KID(x103)(↓) on the effect of SRVT with
MMD-GAN objective and DCGAN architectures.

Dimension of critic output n 16 128 1024
w/o SRVT (Default) 17(1) 16(1) 20(1)
w/ SRVT 14(1) 13(1) 16(1)

significantly boosts performance for different ns. The best
result was obtained with n = 128 (default setup in [28]).
We also notice for MMD-GAN, higher n (1024) did not
improve performance (Bińkowski et al., 2018a), while we
have shown our framework can take advantage of higher
dimension critic output features.


